Skip to main content

High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites.

Author(s): Mihailovic, Mia K; Vazquez-Anderson, Jorge; Li, Yan; Fry, Victoria; Vimalathas, Praveen; et al

To refer to this page use:
Abstract: Herein we introduce a high-throughput method, INTERFACE, to reveal the capacity of contiguous RNA nucleotides to establish in vivo intermolecular RNA interactions for the purpose of functional characterization of intracellular RNA. INTERFACE enables simultaneous accessibility interrogation of an unlimited number of regions by coupling regional hybridization detection to transcription elongation outputs measurable by RNA-seq. We profile over 900 RNA interfaces in 71 validated, but largely mechanistically under-characterized, Escherichia coli sRNAs in the presence and absence of a global regulator, Hfq, and find that two-thirds of tested sRNAs feature Hfq-dependent regions. Further, we identify in vivo hybridization patterns that hallmark functional regions to uncover mRNA targets. In this way, we biochemically validate 25 mRNA targets, many of which are not captured by typically tested, top-ranked computational predictions. We additionally discover direct mRNA binding activity within the GlmY terminator, highlighting the information value of high-throughput RNA accessibility data.
Publication Date: 4-Oct-2018
Citation: Mihailovic, Mia K, Vazquez-Anderson, Jorge, Li, Yan, Fry, Victoria, Vimalathas, Praveen, Herrera, Daniel, Lease, Richard A, Powell, Warren B, Contreras, Lydia M. (2018). High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites.. Nature communications, 9 (1), 4084 - ?. doi:10.1038/s41467-018-06207-z
DOI: doi:10.1038/s41467-018-06207-z
ISSN: 2041-1723
EISSN: 2041-1723
Pages: 4084 - ?
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: Nature communications
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.