Skip to main content

Conservation and divergence of protein pathways in the vertebrate heart

Author(s): Federspiel, Joel D; Tandon, Panna; Wilczewski, Caralynn M; Wasson, Lauren; Herring, Laura E; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1h41jm16
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFederspiel, Joel D-
dc.contributor.authorTandon, Panna-
dc.contributor.authorWilczewski, Caralynn M-
dc.contributor.authorWasson, Lauren-
dc.contributor.authorHerring, Laura E-
dc.contributor.authorVenkatesh, Samvida S-
dc.contributor.authorCristea, Ileana M-
dc.contributor.authorConlon, Frank L-
dc.date.accessioned2022-01-25T14:50:56Z-
dc.date.available2022-01-25T14:50:56Z-
dc.date.issued2019-09-06en_US
dc.identifier.citationFederspiel, Joel D, Tandon, Panna, Wilczewski, Caralynn M, Wasson, Lauren, Herring, Laura E, Venkatesh, Samvida S, Cristea, Ileana M, Conlon, Frank L. (2019). Conservation and divergence of protein pathways in the vertebrate heart.. PLoS biology, 17 (9), e3000437 - e3000437. doi:10.1371/journal.pbio.3000437en_US
dc.identifier.issn1544-9173-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1h41jm16-
dc.description.abstractHeart disease is the leading cause of death in the western world. Attaining a mechanistic understanding of human heart development and homeostasis and the molecular basis of associated disease states relies on the use of animal models. Here, we present the cardiac proteomes of 4 model vertebrates with dual circulatory systems: the pig (Sus scrofa), the mouse (Mus musculus), and 2 frogs (Xenopus laevis and Xenopus tropicalis). Determination of which proteins and protein pathways are conserved and which have diverged within these species will aid in our ability to choose the appropriate models for determining protein function and to model human disease. We uncover mammalian- and amphibian-specific, as well as species-specific, enriched proteins and protein pathways. Among these, we find and validate an enrichment in cell-cycle-associated proteins within Xenopus laevis. To further investigate functional units within cardiac proteomes, we develop a computational approach to profile the abundance of protein complexes across species. Finally, we demonstrate the utility of these data sets for predicting appropriate model systems for studying given cardiac conditions by testing the role of Kielin/chordin-like protein (Kcp), a protein found as enriched in frog hearts compared to mammals. We establish that germ-line mutations in Kcp in Xenopus lead to valve defects and, ultimately, cardiac failure and death. Thus, integrating these findings with data on proteins responsible for cardiac disease should lead to the development of refined, species-specific models for protein function and disease states.en_US
dc.format.extente3000437 - e3000437en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofPLoS Biologyen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleConservation and divergence of protein pathways in the vertebrate hearten_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1371/journal.pbio.3000437-
dc.identifier.eissn1545-7885-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Conservation_divergence_protein_vertegrate_heart.pdf3.68 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.