Skip to main content

Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations

Author(s): Constantin, Peter; Glatt-Holtz, Nathan; Vicol, Vlad C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1gs90
Abstract: We establish the existence and uniqueness of an ergodic invariant measure for 2D fractionally dissipated stochastic Euler equations on the periodic box for any power of the dissipation term.
Publication Date: Sep-2014
Electronic Publication Date: 21-Mar-2014
Citation: Constantin, Peter, Glatt-Holtz, Nathan, Vicol, Vlad. (2014). Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 330 (819 - 857. doi:10.1007/s00220-014-2003-3
DOI: doi:10.1007/s00220-014-2003-3
ISSN: 0010-3616
EISSN: 1432-0916
Pages: 819 - 857
Type of Material: Journal Article
Journal/Proceeding Title: COMMUNICATIONS IN MATHEMATICAL PHYSICS
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.