Skip to main content

Rooted grid minors

Author(s): Marx, Daniel; Seymour, Paul D; Wollan, Paul

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1gq6r22v
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarx, Daniel-
dc.contributor.authorSeymour, Paul D-
dc.contributor.authorWollan, Paul-
dc.date.accessioned2023-10-27T17:48:06Z-
dc.date.available2023-10-27T17:48:06Z-
dc.date.issued2017-01en_US
dc.identifier.citationMarx, Daniel, Seymour, Paul, Wollan, Paul. (2017). Rooted grid minors. JOURNAL OF COMBINATORIAL THEORY SERIES B, 122 (428 - 437. doi:10.1016/j.jctb.2016.07.003en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1gq6r22v-
dc.description.abstractIntuitively, a tangle of large order in a graph is a highly connected part of the graph, and it is known that if a graph has a tangle of large order then it has a large grid minor. Here we show that for any k, if G has a tangle of large order and Z is a set of vertices of cardinality k that cannot be separated from the tangle by any separation of order less than k, then G has a large grid minor containing Z, in which the members of Z all belong to the outside of the grid. (C) 2016 Elsevier Inc. All rights reserved.en_US
dc.format.extent428 - 437en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleRooted grid minorsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2016.07.003-
dc.date.eissued2016-07-26en_US
dc.identifier.eissn1096-0902-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1307.8138.pdf101.19 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.