Skip to main content

Generalized high-dimensional trace regression via nuclear norm regularization

Author(s): Fan, Jianqing; Gong, W; Zhu, Z

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1gg4h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Jianqing-
dc.contributor.authorGong, W-
dc.contributor.authorZhu, Z-
dc.date.accessioned2021-10-11T14:17:35Z-
dc.date.available2021-10-11T14:17:35Z-
dc.date.issued2019-09-01en_US
dc.identifier.citationFan, J, Gong, W, Zhu, Z. (2019). Generalized high-dimensional trace regression via nuclear norm regularization. Journal of Econometrics, 212 (1), 177 - 202. doi:10.1016/j.jeconom.2019.04.026en_US
dc.identifier.issn0304-4076-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1gg4h-
dc.description.abstract© 2019 Elsevier B.V. We study the generalized trace regression with a near low-rank regression coefficient matrix, which extends notion of sparsity for regression coefficient vectors. Specifically, given a matrix covariate X, the probability density function of the response Y is f(Y|X)=c(Y)exp(ϕ−1−Yη∗+b(η∗)), where η∗=tr(Θ∗TX). This model accommodates various types of responses and embraces many important problem setups such as reduced-rank regression, matrix regression that accommodates a panel of regressors, matrix completion, among others. We estimate Θ∗ through minimizing empirical negative log-likelihood plus nuclear norm penalty. We first establish a general theory and then for each specific problem, we derive explicitly the statistical rate of the proposed estimator. They all match the minimax rates in the linear trace regression up to logarithmic factors. Numerical studies confirm the rates we established and demonstrate the advantage of generalized trace regression over linear trace regression when the response is dichotomous. We also show the benefit of incorporating nuclear norm regularization in dynamic stock return prediction and in image classification.en_US
dc.format.extent177 - 202en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Econometricsen_US
dc.rightsAuthor's manuscripten_US
dc.titleGeneralized high-dimensional trace regression via nuclear norm regularizationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jeconom.2019.04.026-
dc.identifier.eissn1872-6895-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Generalized high-dimensional trace regression via nuclear norm regularization.pdf528.25 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.