GENUS PERIODS, GENUS POINTS AND CONGRUENT NUMBER PROBLEM
Author(s): Tian, Ye; Yuan, Xinyi; Zhang, Shou-Wu
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1g988
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tian, Ye | - |
dc.contributor.author | Yuan, Xinyi | - |
dc.contributor.author | Zhang, Shou-Wu | - |
dc.date.accessioned | 2019-04-05T18:38:24Z | - |
dc.date.available | 2019-04-05T18:38:24Z | - |
dc.date.issued | 2017-08 | en_US |
dc.identifier.citation | Tian, Ye, Yuan, Xinyi, Zhang, Shou-Wu. (2017). GENUS PERIODS, GENUS POINTS AND CONGRUENT NUMBER PROBLEM. ASIAN JOURNAL OF MATHEMATICS, 21 (721 - 774). doi:10.4310/AJM.2017.v21.n4.a5 | en_US |
dc.identifier.issn | 1093-6106 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1g988 | - |
dc.description.abstract | In this paper, based on an idea of Tian we establish a new sufficient condition for a positive integer n to be a congruent number in terms of the Legendre symbols for the prime factors of n. Our criterion generalizes previous results of Heegner, Birch-Stephens, Monsky, and Tian, and conjecturally provides a list of positive density of congruent numbers. Our method of proving the criterion is to give formulae for the analytic Tate-Shafarevich number L(n) in terms of the so-called genus periods and genus points. These formulae are derived from the Waldspurger formula and the generalized Gross-Zagier formula of Yuan-Zhang-Zhang. | en_US |
dc.format.extent | 721 - 774 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ASIAN JOURNAL OF MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | GENUS PERIODS, GENUS POINTS AND CONGRUENT NUMBER PROBLEM | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4310/AJM.2017.v21.n4.a5 | - |
dc.date.eissued | 2017-08-25 | en_US |
dc.identifier.eissn | 1945-0036 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1411.4728v1.pdf | 460.75 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.