Skip to main content

A note on renormalized volume functionals

Author(s): Chang, Sun-Yung A.; Fang, Hao; Graham, C Robin

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1g73f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Sun-Yung A.-
dc.contributor.authorFang, Hao-
dc.contributor.authorGraham, C Robin-
dc.date.accessioned2019-10-09T19:47:58Z-
dc.date.available2019-10-09T19:47:58Z-
dc.date.issued2014-03en_US
dc.identifier.citationChang, Sun-Yung Alice, Fang, Hao, Graham, C Robin. (2014). A note on renormalized volume functionals. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 33 (246 - 258. doi:10.1016/j.difgeo.2013.10.001en_US
dc.identifier.issn0926-2245-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1g73f-
dc.description.abstractNew properties are derived of renormalized volume functionals, which arise as coefficients in the asymptotic expansion of the volume of an asymptotically hyperbolic Einstein (AHE) manifold. A formula is given for the renormalized volume of an even-dimensional AHE manifold in terms of an arbitrary totally geodesic compactification. The second variation of renormalized volume functionals under conformal change is identified, and is used to show that Einstein metrics of nonzero scalar curvature are local extrema. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.format.extent246 - 258en_US
dc.language.isoen_USen_US
dc.relation.ispartofDIFFERENTIAL GEOMETRY AND ITS APPLICATIONSen_US
dc.rightsAuthor's manuscripten_US
dc.titleA note on renormalized volume functionalsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.difgeo.2013.10.001-
dc.date.eissued2013-11-22en_US
dc.identifier.eissn1872-6984-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
09cfg.pdf180.89 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.