Skip to main content

Bordered Floer homology and the spectral sequence of a branched double cover I

Author(s): Lipshitz, Robert; Ozsvath, Peter Steven; Thurston, Dylan P.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1g098
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLipshitz, Robert-
dc.contributor.authorOzsvath, Peter Steven-
dc.contributor.authorThurston, Dylan P.-
dc.date.accessioned2018-07-20T15:08:58Z-
dc.date.available2018-07-20T15:08:58Z-
dc.date.issued2014-12en_US
dc.identifier.citationLipshitz, Robert, Ozsvath, Peter S, Thurston, Dylan P. (2014). Bordered Floer homology and the spectral sequence of a branched double cover I. JOURNAL OF TOPOLOGY, 7 (1155 - 1199. doi:10.1112/jtopol/jtu012en_US
dc.identifier.issn1753-8416-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1g098-
dc.description.abstractGiven a link in the three-sphere, Z. Szabo and the second author constructed a spectral sequence starting at the Khovanov homology of the link and converging to the Heegaard Floer homology of its branched double cover. The aim of this paper and its sequel is to explicitly calculate this spectral sequence, using bordered Floer homology. There are two primary ingredients in this computation: an explicit calculation of filtered bimodules associated to Dehn twists and a pairing theorem for polygons. In this paper, we give the first ingredient, and so obtain a combinatorial spectral sequence from Khovanov homology to Heegaard Floer homology; in the sequel, we show that this spectral sequence agrees with the previously known one.en_US
dc.format.extent1155 - 1199en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF TOPOLOGYen_US
dc.rightsAuthor's manuscripten_US
dc.titleBordered Floer homology and the spectral sequence of a branched double cover Ien_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1112/jtopol/jtu012-
dc.date.eissued2014-07-30en_US
dc.identifier.eissn1753-8424-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1011.0499v2.pdf985.54 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.