Skip to main content


Author(s): Fan, Jianqing; Liu, Han; Sun, Qiang; Zhang, Tong

To refer to this page use:
Abstract: We propose a computational framework named iterative local adaptive majorize-minimization (I-LAMM) to simultaneously control algorithmic complexity and statistical error when fitting high dimensional models. I-LAMM is a two-stage algorithmic implementation of the local linear approximation to a family of folded concave penalized quasi-likelihood. The first stage solves a convex program with a crude precision tolerance to obtain a coarse initial estimator, which is further refined in the second stage by iteratively solving a sequence of convex programs with smaller precision tolerances. Theoretically, we establish a phase transition: the first stage has a sublinear iteration complexity, while the second stage achieves an improved linear rate of convergence. Though this framework is completely algorithmic, it provides solutions with optimal statistical performances and controlled algorithmic complexity for a large family of nonconvex optimization problems. The iteration effects on statistical errors are clearly demonstrated via a contraction property. Our theory relies on a localized version of the sparse/restricted eigenvalue condition, which allows us to analyze a large family of loss and penalty functions and provide optimality guarantees under very weak assumptions (For example, I-LAMM requires much weaker minimal signal strength than other procedures). Thorough numerical results are provided to support the obtained theory.
Publication Date: 3-Apr-2018
Citation: Fan, Jianqing, Liu, Han, Sun, Qiang, Zhang, Tong. (2018). I-LAMM FOR SPARSE LEARNING: SIMULTANEOUS CONTROL OF ALGORITHMIC COMPLEXITY AND STATISTICAL ERROR.. Annals of statistics, 46 (2), 814 - 841. doi:10.1214/17-aos1568
DOI: doi:10.1214/17-aos1568
ISSN: 0090-5364
EISSN: 2168-8966
Pages: 814 - 841
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: Annals of statistics
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.