Skip to main content

TIGER: A tuning-insensitive approach for optimally estimating Gaussian graphical models

Author(s): Liu, Han; Wang, Lie

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fs0x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Han-
dc.contributor.authorWang, Lie-
dc.date.accessioned2021-10-11T14:17:07Z-
dc.date.available2021-10-11T14:17:07Z-
dc.date.issued2017en_US
dc.identifier.citationLiu, Han, and Lie Wang. "Tiger: A tuning-insensitive approach for optimally estimating gaussian graphical models." Electronic Journal of Statistics 11, no. 1 (2017): pp. 241-294. doi:10.1214/16-EJS1195.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fs0x-
dc.description.abstractWe propose a new procedure for optimally estimating high dimensional Gaussian graphical models. Our approach is asymptotically tuning-free and non-asymptotically tuning-insensitive: It requires very little effort to choose the tuning parameter in finite sample settings. Computationally, our procedure is significantly faster than existing methods due to its tuning-insensitive property. Theoretically, the obtained estimator simultaneously achieves minimax lower bounds for precision matrix estimation under different norms. Empirically, we illustrate the advantages of the proposed method using simulated and real examples. The R package camel implementing the proposed methods is also available on the Comprehensive R Archive Network.en_US
dc.format.extent241 - 294en_US
dc.language.isoen_USen_US
dc.relation.ispartofElectronic Journal of Statisticsen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleTIGER: A tuning-insensitive approach for optimally estimating Gaussian graphical modelsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/16-EJS1195-
dc.identifier.eissn1935-7524-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
TIGERGaussianGraphicalModels.pdf1.25 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.