Skip to main content

Variety Evasive Sets

Author(s): Dvir, Zeev; Kollar, Janos; Lovett, Shachar

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fp9h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDvir, Zeev-
dc.contributor.authorKollar, Janos-
dc.contributor.authorLovett, Shachar-
dc.date.accessioned2017-11-21T19:48:32Z-
dc.date.available2017-11-21T19:48:32Z-
dc.date.issued2014-12en_US
dc.identifier.citationDvir, Zeev, Kollar, Janos, Lovett, Shachar. (2014). Variety Evasive Sets. COMPUTATIONAL COMPLEXITY, 23 (509 - 529. doi:10.1007/s00037-013-0073-9en_US
dc.identifier.issn1016-3328-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fp9h-
dc.description.abstractWe give an explicit construction of a large subset , where is a finite field, that has small intersection with any affine variety of fixed dimension and bounded degree. Our construction generalizes a recent result of Dvir and Lovett (STOC 2012) who considered varieties of degree one (that is, affine subspaces).en_US
dc.format.extent509 - 529en_US
dc.language.isoenen_US
dc.relation.ispartofCOMPUTATIONAL COMPLEXITYen_US
dc.rightsAuthor's manuscripten_US
dc.titleVariety Evasive Setsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s00037-013-0073-9-
dc.date.eissued2013-06-25en_US
dc.identifier.eissn1420-8954-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1203.4532v1.pdf169.67 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.