Skip to main content

Group behavior among model bacteria influences particulate carbon remineralization depths

Author(s): Mislan, KAS; Stock, Charles A; Dunne, John P; Sarmiento, Jorge L

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fn10r72
Abstract: Organic particles sinking from the sunlit surface are oases of food for heterotrophic bacteria living in the deep ocean. Particle-attached bacteria need to solubilize particles, so they produce exoenzymes that cleave bonds to make molecules small enough to be transported through bacterial cell walls. Releasing exoenzymes, which have an energetic cost, to the external environment is risky because there is no guarantee that products of exoenzyme activity, called hydrolysate, will diffuse to the particle-attached bacterium that produced the exoenzymes. Strategies used by particle-attached bacteria to counteract diffusive losses of exoenzymes and hydrolysate are investigated in a water column model. We find that production of exoenzymes by particle-attached bacteria is only energetically worthwhile at high bacterial abundances. Quorum sensing provides the means to determine local abundances, and thus the model results support lab and field studies which found that particle-attached bacteria have the ability to use quorum sensing. Additional model results are that particle-attached bacterial production is sensitive to diffusion of hydrolysate from the particle and is enhanced by as much as 15 times when diffusion of exoenzymes and hydrolysate from particles is reduced by barriers of biofilms and particle-attached bacteria. Bacterial colonization rates and activities on particles in both the euphotic and mesopelagic zones impact remineralization length scales. Shoaling or deepening of the remineralization depth has been shown to exert significant influence on the residence time and concentration of carbon in the atmosphere and ocean. By linking variability in remineralization depths to mechanisms governing bacterial colonization of particles and group coordination of exoenzyme production using a model, we quantitatively connect microscale bacteria-particle interactions to the carbon cycle and provide new insights for future observations.
Publication Date: May-2014
Citation: Mislan, K. A. S., Charles A. Stock, John P. Dunne, and Jorge L. Sarmiento. "Group behavior among model bacteria influences particulate carbon remineralization depths." Journal of Marine Research 72, no. 3 (2014): 183-218. doi:10.1357/002224014814901985.
DOI: doi:10.1357/002224014814901985
ISSN: 0022-2402
EISSN: 1543-9542
Pages: 183 - 218
Type of Material: Journal Article
Journal/Proceeding Title: Journal of Marine Research
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.