Skip to main content

Rao’s degree sequence conjecture

Author(s): Chudnovsky, Maria; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fh5z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2018-07-20T15:09:42Z-
dc.date.available2018-07-20T15:09:42Z-
dc.date.issued2014-03en_US
dc.identifier.citationChudnovsky, Maria, Seymour, Paul. (2014). Rao’s degree sequence conjecture. JOURNAL OF COMBINATORIAL THEORY SERIES B, 105 (44 - 92. doi:10.1016/j.jctb.2013.12.003en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fh5z-
dc.description.abstractLet us say two (simple) graphs G, G’ are degree-equivalent if they have the same vertex set, and for every vertex, its degrees in G and in G’ are equal. In the early 1980’s, S.B. Rao made the conjecture that in any infinite set of graphs, there exist two of them, say G and H, such that H is isomorphic to an induced subgraph of some graph that is degree-equivalent to G. We prove this conjecture. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.format.extent44 - 92en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleRao’s degree sequence conjectureen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2013.12.003-
dc.date.eissued2014-01-22en_US
dc.identifier.eissn1096-0902-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Rao.pdf307.77 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.