Skip to main content

BELIEF PROPAGATION, ROBUST RECONSTRUCTION AND OPTIMAL RECOVERY OF BLOCK MODELS

Author(s): Mossel, Elchanan; Neeman, Joe; Sly, Allan M.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fd5t
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMossel, Elchanan-
dc.contributor.authorNeeman, Joe-
dc.contributor.authorSly, Allan M.-
dc.date.accessioned2019-03-27T22:02:18Z-
dc.date.available2019-03-27T22:02:18Z-
dc.date.issued2016-08en_US
dc.identifier.citationMossel, Elchanan, Neeman, Joe, Sly, Allan. (2016). BELIEF PROPAGATION, ROBUST RECONSTRUCTION AND OPTIMAL RECOVERY OF BLOCK MODELS. ANNALS OF APPLIED PROBABILITY, 26 (2211 - 2256. doi:10.1214/15-AAP1145en_US
dc.identifier.issn1050-5164-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fd5t-
dc.description.abstractWe consider the problem of reconstructing sparse symmetric block models with two blocks and connection probabilities a/n and b/n for inter- and intra-block edge probabilities, respectively. It was recently shown that one can do better than a random guess if and only if (a - b)(2) > 2(a b). Using a variant of belief propagation, we give a reconstruction algorithm that is optimal in the sense that if (a - b)(2) > C (a b) for some constant C then our algorithm maximizes the fraction of the nodes labeled correctly. Ours is the only algorithm proven to achieve the optimal fraction of nodes labeled correctly. Along the way, we prove some results of independent interest regarding robust reconstruction for the Ising model on regular and Poisson trees.en_US
dc.format.extent2211 - 2256en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofANNALS OF APPLIED PROBABILITYen_US
dc.rightsAuthor's manuscripten_US
dc.titleBELIEF PROPAGATION, ROBUST RECONSTRUCTION AND OPTIMAL RECOVERY OF BLOCK MODELSen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/15-AAP1145-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1309.1380.pdf451.67 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.