Skip to main content

Many-Body Localization and Thermalization in Quantum Statistical Mechanics

Author(s): Nandkishore, Rahul; Huse, David A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1f76669k
Abstract: We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.
Publication Date: Mar-2015
Electronic Publication Date: Mar-2015
Citation: Nandkishore, Rahul, Huse, David A. (2015). Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annual Review of Condensed Matter Physics, 6 (1), 15 - 38. doi:10.1146/annurev-conmatphys-031214-014726
DOI: doi:10.1146/annurev-conmatphys-031214-014726
ISSN: 1947-5454
EISSN: 1947-5462
Pages: 15 - 38
Type of Material: Journal Article
Journal/Proceeding Title: Annual Review of Condensed Matter Physics
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.