Skip to main content

Nonlinear fractional Schrodinger equations in one dimension

Author(s): Ionescu, Alexandru D; Pusateri, Fabio Giuseppe

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1f35d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIonescu, Alexandru D-
dc.contributor.authorPusateri, Fabio Giuseppe-
dc.date.accessioned2017-11-21T19:42:55Z-
dc.date.available2017-11-21T19:42:55Z-
dc.date.issued2014-01-01en_US
dc.identifier.citationIonescu, Alexandru D, Pusateri, Fabio. (2014). Nonlinear fractional Schrodinger equations in one dimension. JOURNAL OF FUNCTIONAL ANALYSIS, 266 (139 - 176. doi:10.1016/j.jfa.2013.08.027en_US
dc.identifier.issn0022-1236-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1f35d-
dc.description.abstractWe consider the question of global existence of small, smooth, and localized solutions of a certain fractional semilinear cubic NLS in one dimension, i partial derivative(t)u - Lambda u = c(0)vertical bar u vertical bar(2)u + c(1)u(3) + c(2)u (u) over bar (2) + c(3)(u) over bar (3), Lambda = Lambda(partial derivative(x)) = vertical bar partial derivative(x)vertical bar 1/2, where c(0) is an element of R and c(1), c(2), c(3) is an element of C. This model is motivated by the two-dimensional water wave equation, which has a somewhat similar structure in the Eulerian formulation, in the case of irrotational flows. We show that one cannot expect linear scattering, even in this simplified model. More precisely, we identify a suitable nonlinear logarithmic correction, and prove global existence and modified scattering of solutions. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.format.extent139 - 176en_US
dc.language.isoenen_US
dc.relation.ispartofJOURNAL OF FUNCTIONAL ANALYSISen_US
dc.rightsAuthor's manuscripten_US
dc.titleNonlinear fractional Schrodinger equations in one dimensionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jfa.2013.08.027-
dc.date.eissued2013-10-07en_US
dc.identifier.eissn1096-0783-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1209.4943v1.pdf297.15 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.