Skip to main content

A Depression Network of Functionally Connected Regions Discovered via Multi-Attribute Canonical Correlation Graphs

Author(s): Kang, Jian; Bowman, F. DuBois; Mayberg, Helen; Liu, Han

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dv25
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKang, Jian-
dc.contributor.authorBowman, F. DuBois-
dc.contributor.authorMayberg, Helen-
dc.contributor.authorLiu, Han-
dc.date.accessioned2020-03-30T18:32:29Z-
dc.date.available2020-03-30T18:32:29Z-
dc.date.issued2016-11en_US
dc.identifier.citationKang, Jian, Bowman, F DuBois, Mayberg, Helen, Liu, Han. (2016). A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs. NeuroImage, 141 (431 - 441). doi:10.1016/j.neuroimage.2016.06.042en_US
dc.identifier.issn1053-8119-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dv25-
dc.description.abstractTo establish brain network properties associated with major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (Rs-fMRI) data, we develop a multi-attribute graph model to construct a region-level functional connectivity network that uses all voxel level information. For each region pair, we define the strength of the connectivity as the kernel canonical correlation coefficient between voxels in the two regions; and we develop a permutation test to assess the statistical significance. We also construct a network based classifier for making predictions on the risk of MDD. We apply our method to Rs-fMRI data from 20 MDD patients and 20 healthy control subjects in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Using this method, MDD patients can be distinguished from healthy control subjects based on significant differences in the strength of regional connectivity. We also demonstrate the performance of the proposed method using simulation studies.en_US
dc.format.extent431 - 441en_US
dc.language.isoen_USen_US
dc.relation.ispartofNeuroImageen_US
dc.rightsAuthor's manuscripten_US
dc.titleA Depression Network of Functionally Connected Regions Discovered via Multi-Attribute Canonical Correlation Graphsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.neuroimage.2016.06.042-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
DepressionNetworkMultiAttributeCanonical.pdf1.75 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.