Skip to main content

Kac-Ward Formula and Its Extension to Order-Disorder Correlators Through a Graph Zeta Function

Author(s): Aizenman, Michael; Warzel, Simone

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dt6f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizenman, Michael-
dc.contributor.authorWarzel, Simone-
dc.date.accessioned2019-05-30T15:59:39Z-
dc.date.available2019-05-30T15:59:39Z-
dc.date.issued2018-12en_US
dc.identifier.citationAizenman, Michael, Warzel, Simone. (2018). Kac-Ward Formula and Its Extension to Order-Disorder Correlators Through a Graph Zeta Function. JOURNAL OF STATISTICAL PHYSICS, 173 (1755 - 1778. doi:10.1007/s10955-018-2184-9en_US
dc.identifier.issn0022-4715-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dt6f-
dc.description.abstractA streamlined derivation of the Kac-Ward formula for the planar Ising model’s partition function is presented and applied in relating the kernel of the Kac-Ward matrices’ inverse with the correlation functions of the Ising model’s order-disorder correlation functions. A shortcut for both is facilitated by the Bowen-Lanford graph zeta function relation. The Kac-Ward relation is also extended here to produce a family of non planar interactions on Z(2) for which the partition function and the order-disorder correlators are solvable at special values of the coupling parameters/temperature.en_US
dc.format.extent1755 - 1778en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF STATISTICAL PHYSICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleKac-Ward Formula and Its Extension to Order-Disorder Correlators Through a Graph Zeta Functionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s10955-018-2184-9-
dc.date.eissued2018-11-23en_US
dc.identifier.eissn1572-9613-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1709.06052.pdf668.59 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.