Skip to main content

Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework

Author(s): Cornish, Neil; Sampson, Laura; Yunes, Nicolas; Pretorius, Frans

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dm5r
Abstract: Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong-field dynamical gravity. Extracting detailed information about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is not described by general relativity, analyses that are based on waveforms derived from Einstein’s field equations could result in parameter biases and a loss of detection efficiency. A new class of “parameterized post-Einsteinian” waveforms has been proposed to cover this eventuality. Here, we apply the parameterized post-Einsteinian approach to simulated data from a network of advanced ground-based interferometers and from a future space-based interferometer. Bayesian inference and model selection are used to investigate parameter biases, and to determine the level at which departures from general relativity can be detected. We find that in some cases the parameter biases from assuming the wrong theory can be severe. We also find that gravitational wave observations will beat the existing bounds on deviations from general relativity derived from the orbital decay of binary pulsars by a large margin across a wide swath of parameter space.
Publication Date: 15-Sep-2011
Electronic Publication Date: 30-Sep-2011
Citation: Cornish, Neil, Sampson, Laura, Yunes, Nicolas, Pretorius, Frans. (2011). Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework. PHYSICAL REVIEW D, 84 (10.1103/PhysRevD.84.062003
DOI: doi:10.1103/PhysRevD.84.062003
ISSN: 1550-7998
Type of Material: Journal Article
Journal/Proceeding Title: PHYSICAL REVIEW D
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.