Skip to main content

A survey of structure from motion

Author(s): Ozyesil, Onur; Voroninski, Vladislav; Basri, Ronen; Singer, Amit

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dm4b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzyesil, Onur-
dc.contributor.authorVoroninski, Vladislav-
dc.contributor.authorBasri, Ronen-
dc.contributor.authorSinger, Amit-
dc.date.accessioned2018-07-20T15:09:46Z-
dc.date.available2018-07-20T15:09:46Z-
dc.date.issued2017-05-01en_US
dc.identifier.citationOzyesil, Onur, Voroninski, Vladislav, Basri, Ronen, Singer, Amit. (2017). A survey of structure from motion. ACTA NUMERICA, 26 (305 - 364. doi:10.1017/S096249291700006Xen_US
dc.identifier.issn0962-4929-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dm4b-
dc.description.abstractThe structure from motion (SfM) problem in computer vision is to recover the three-dimensional (3D) structure of a stationary scene from a set of projective measurements, represented as a collection of two-dimensional (2D) images, via estimation of motion of the cameras corresponding to these images. In essence, SfM involves the three main stages of (i) extracting features in images (e.g. points of interest, lines, etc.) and matching these features between images, (ii) camera motion estimation (e.g. using relative pairwise camera positions estimated from the extracted features), and (iii) recovery of the 3D structure using the estimated motion and features (e.g. by minimizing the so-called reprojection error). This survey mainly focuses on relatively recent developments in the literature pertaining to stages (ii) and (iii). More specifically, after touching upon the early factorization-based techniques for motion and structure estimation, we provide a detailed account of some of the recent camera location estimation methods in the literature, followed by discussion of notable techniques for 3D structure recovery. We also cover the basics of the simultaneous localization and mapping (SLAM) problem, which can be viewed as a specific case of the SfM problem. Further, our survey includes a review of the fundamentals of feature extraction and matching (i.e. stage (i) above), various recent methods for handling ambiguities in 3D scenes, SfM techniques involving relatively uncommon camera models and image features, and popular sources of data and SfM software.en_US
dc.format.extent305 - 364en_US
dc.language.isoen_USen_US
dc.relation.ispartofACTA NUMERICAen_US
dc.rightsAuthor's manuscripten_US
dc.titleA survey of structure from motionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1017/S096249291700006X-
dc.date.eissued2017-05-05en_US
dc.identifier.eissn1474-0508-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1701.08493v2.pdf4.38 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.