Skip to main content

Discrete Riesz transforms and sharp metric X-p inequalities

Author(s): Naor, Assaf

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dm3x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaor, Assaf-
dc.date.accessioned2018-07-20T15:07:51Z-
dc.date.available2018-07-20T15:07:51Z-
dc.date.issued2016-11en_US
dc.identifier.citationNaor, Assaf. (2016). Discrete Riesz transforms and sharp metric X-p inequalities. ANNALS OF MATHEMATICS, 184 (991 - 1016. doi:10.4007/annals.2016.184.3.9en_US
dc.identifier.issn0003-486X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dm3x-
dc.description.abstractFor p epsilon [2, infinity), the metric X-p, inequality with sharp scaling parameter is proven here to hold true in L-p. The geometric consequences of this result include the following sharp statements about embeddings of L-q into Lp when 2 < q < p < infinity: the maximal 0 epsilon (0,1] for which L-q admits a bi-theta-Holder embedding into L-p equals q/p, and for m,n epsilon N, the smallest possible bi-Lipschitz distortion of any embedding into L-p of the grid 1,...,m(n) subset of l(q)(n) is bounded above and below by constant multiples (depending only on p, q) of the quantity minn((p-q)(q-2)/(q2(p-2))),m((q-2)/q).en_US
dc.format.extent991 - 1016en_US
dc.language.isoenen_US
dc.relation.ispartofANNALS OF MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleDiscrete Riesz transforms and sharp metric X-p inequalitiesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4007/annals.2016.184.3.9-
dc.date.eissued2016-09-16en_US
dc.identifier.eissn1939-8980-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1601.03332v1.pdf282.82 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.