To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1dm3x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Naor, Assaf | - |
dc.date.accessioned | 2018-07-20T15:07:51Z | - |
dc.date.available | 2018-07-20T15:07:51Z | - |
dc.date.issued | 2016-11 | en_US |
dc.identifier.citation | Naor, Assaf. (2016). Discrete Riesz transforms and sharp metric X-p inequalities. ANNALS OF MATHEMATICS, 184 (991 - 1016. doi:10.4007/annals.2016.184.3.9 | en_US |
dc.identifier.issn | 0003-486X | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1dm3x | - |
dc.description.abstract | For p epsilon [2, infinity), the metric X-p, inequality with sharp scaling parameter is proven here to hold true in L-p. The geometric consequences of this result include the following sharp statements about embeddings of L-q into Lp when 2 < q < p < infinity: the maximal 0 epsilon (0,1] for which L-q admits a bi-theta-Holder embedding into L-p equals q/p, and for m,n epsilon N, the smallest possible bi-Lipschitz distortion of any embedding into L-p of the grid 1,...,m(n) subset of l(q)(n) is bounded above and below by constant multiples (depending only on p, q) of the quantity minn((p-q)(q-2)/(q2(p-2))),m((q-2)/q). | en_US |
dc.format.extent | 991 - 1016 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | ANNALS OF MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Discrete Riesz transforms and sharp metric X-p inequalities | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4007/annals.2016.184.3.9 | - |
dc.date.eissued | 2016-09-16 | en_US |
dc.identifier.eissn | 1939-8980 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1601.03332v1.pdf | 282.82 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.