Skip to main content

Alert Response to Motion Onset in the Retina

Author(s): Chen, Eric Y; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; et al

To refer to this page use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Eric Y-
dc.contributor.authorMarre, Olivier-
dc.contributor.authorFisher, Clark-
dc.contributor.authorSchwartz, Greg-
dc.contributor.authorLevy, Joshua-
dc.contributor.authorda Silveira, Rava Azeredo-
dc.contributor.authorBerry II, Michael J-
dc.description.abstractPrevious studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system.en_US
dc.relation.ispartofThe Journal of Neuroscienceen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleAlert Response to Motion Onset in the Retinaen_US
dc.typeJournal Articleen_US

Files in This Item:
File Description SizeFormat 
alert response.pdf4.1 MBAdobe PDFView/Download

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.