Skip to main content

Optimal Tests of Treatment Effects for the Overall Population and Two Subpopulations in Randomized Trials, Using Sparse Linear Programming

Author(s): Rosenblum, Michael; Liu, Han; Yen, En-Hsu

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dc53
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRosenblum, Michael-
dc.contributor.authorLiu, Han-
dc.contributor.authorYen, En-Hsu-
dc.date.accessioned2021-10-11T14:17:00Z-
dc.date.available2021-10-11T14:17:00Z-
dc.date.issued2014en_US
dc.identifier.citationRosenblum, Michael, Han Liu, and En-Hsu Yen. "Optimal tests of treatment effects for the overall population and two subpopulations in randomized trials, using sparse linear programming." Journal of the American Statistical Association, 109, no. 507 (2014): 1216-1228. doi:10.1080/01621459.2013.879063en_US
dc.identifier.issn0162-1459-
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283951/-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dc53-
dc.description.abstractWe propose new, optimal methods for analyzing randomized trials, when it is suspected that treatment effects may differ in two predefined subpopulations. Such subpopulations could be defined by a biomarker or risk factor measured at baseline. The goal is to simultaneously learn which subpopulations benefit from an experimental treatment, while providing strong control of the familywise Type I error rate. We formalize this as a multiple testing problem and show it is computationally infeasible to solve using existing techniques. Our solution involves a novel approach, in which we first transform the original multiple testing problem into a large, sparse linear program. We then solve this problem using advanced optimization techniques. This general method can solve a variety of multiple testing problems and decision theory problems related to optimal trial design, for which no solution was previously available. In particular, we construct new multiple testing procedures that satisfy minimax and Bayes optimality criteria. For a given optimality criterion, our new approach yields the optimal tradeoff between power to detect an effect in the overall population versus power to detect effects in subpopulations. We demonstrate our approach in examples motivated by two randomized trials of new treatments for HIV. Supplementary materials for this article are available online.en_US
dc.format.extent1216 - 1228en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of the American Statistical Associationen_US
dc.rightsAuthor's manuscripten_US
dc.titleOptimal Tests of Treatment Effects for the Overall Population and Two Subpopulations in Randomized Trials, Using Sparse Linear Programmingen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1080/01621459.2013.879063-
dc.date.eissued2014-10-02en_US
dc.identifier.eissn1537-274X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OptimalTreatmenSparseLinearProg.pdf2.14 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.