Skip to main content

A positive proportion of elliptic curves over Q have rank one

Author(s): Bhargava, Manjul; Skinner, Christopher M.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1d93h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhargava, Manjul-
dc.contributor.authorSkinner, Christopher M.-
dc.date.accessioned2017-11-21T19:04:30Z-
dc.date.available2017-11-21T19:04:30Z-
dc.date.issued2014-06en_US
dc.identifier.citationBhargava, Manjul, Skinner, Christopher. (2014). A positive proportion of elliptic curves over Q have rank one. JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 29 (221 - 242en_US
dc.identifier.issn0970-1249-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1d93h-
dc.description.abstractWe prove that, when all elliptic curves over Q are ordered by naive height, a positive proportion have both algebraic and analytic rank one. It follows that the average rank and the average analytic rank of elliptic curves are both strictly positive.en_US
dc.format.extent221 - 242en_US
dc.language.isoenen_US
dc.relation.ispartofJOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETYen_US
dc.rightsAuthor's manuscripten_US
dc.titleA positive proportion of elliptic curves over Q have rank oneen_US
dc.typeJournal Articleen_US
dc.identifier.eissn2320-3110-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1401.0233v1.pdf239.77 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.