Finding minimum clique capacity
Author(s): Chudnovsky, Maria; Oum, Sang-il; Seymour, Paul D.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1d107
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chudnovsky, Maria | - |
dc.contributor.author | Oum, Sang-il | - |
dc.contributor.author | Seymour, Paul D. | - |
dc.date.accessioned | 2018-07-20T15:09:05Z | - |
dc.date.available | 2018-07-20T15:09:05Z | - |
dc.date.issued | 2012-04 | en_US |
dc.identifier.citation | Chudnovsky, Maria, Oum, Sang-Il, Seymour, Paul. (2012). Finding minimum clique capacity. COMBINATORICA, 32 (283 - 287. doi:10.1007/s00493-012-2891-9 | en_US |
dc.identifier.issn | 0209-9683 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1d107 | - |
dc.description.abstract | Let C be a clique of a graph G. The capacity of C is defined to be (|V (G)\textbackslashC|+|D|)/2, where D is the set of vertices in V (G)\textbackslashC that have both a neighbour and a non-neighbour in C. We give a polynomial-time algorithm to find the minimum clique capacity in a graph G. This problem arose in the study [1] of packing vertex-disjoint induced three-vertex paths in a graph with no stable set of size three, which in turn was motivated by Hadwiger’s conjecture. | en_US |
dc.format.extent | 283 - 287 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | COMBINATORICA | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Finding minimum clique capacity | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00493-012-2891-9 | - |
dc.date.eissued | 2012-06-07 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
cliquecap.pdf | 58.86 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.