Induced subgraphs of graphs with large chromatic number. I. Odd holes
Author(s): Scott, Alex; Seymour, Paul D.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1ct0m
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Scott, Alex | - |
dc.contributor.author | Seymour, Paul D. | - |
dc.date.accessioned | 2018-07-20T15:07:33Z | - |
dc.date.available | 2018-07-20T15:07:33Z | - |
dc.date.issued | 2016-11 | en_US |
dc.identifier.citation | Scott, Alex, Seymour, Paul. (2016). Induced subgraphs of graphs with large chromatic number. I. Odd holes. JOURNAL OF COMBINATORIAL THEORY SERIES B, 121 (68 - 84. doi:10.1016/j.jctb.2015.10.002 | en_US |
dc.identifier.issn | 0095-8956 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1ct0m | - |
dc.description.abstract | An odd hole in a graph is an induced subgraph which is a cycle of odd length at least five. In 1985, A. Gyarfas made the conjecture that for all t there exists n such that every graph with no Kt subgraph and no odd hole is n-colourable. We prove this conjecture. (C) 2015 Elsevier Inc. All rights reserved. | en_US |
dc.format.extent | 68 - 84 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | JOURNAL OF COMBINATORIAL THEORY SERIES B | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Induced subgraphs of graphs with large chromatic number. I. Odd holes | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.jctb.2015.10.002 | - |
dc.date.eissued | 2015-10-30 | en_US |
dc.identifier.eissn | 1096-0902 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1410.4118.pdf | 154.51 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.