Skip to main content

Induced subgraphs of graphs with large chromatic number. I. Odd holes

Author(s): Scott, Alex; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1ct0m
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScott, Alex-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2018-07-20T15:07:33Z-
dc.date.available2018-07-20T15:07:33Z-
dc.date.issued2016-11en_US
dc.identifier.citationScott, Alex, Seymour, Paul. (2016). Induced subgraphs of graphs with large chromatic number. I. Odd holes. JOURNAL OF COMBINATORIAL THEORY SERIES B, 121 (68 - 84. doi:10.1016/j.jctb.2015.10.002en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1ct0m-
dc.description.abstractAn odd hole in a graph is an induced subgraph which is a cycle of odd length at least five. In 1985, A. Gyarfas made the conjecture that for all t there exists n such that every graph with no Kt subgraph and no odd hole is n-colourable. We prove this conjecture. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.format.extent68 - 84en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleInduced subgraphs of graphs with large chromatic number. I. Odd holesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2015.10.002-
dc.date.eissued2015-10-30en_US
dc.identifier.eissn1096-0902-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1410.4118.pdf154.51 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.