Skip to main content

Hedging with temporary price impact

Author(s): Bank, P; Soner, H Mete; Voß, M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1cc5r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBank, P-
dc.contributor.authorSoner, H Mete-
dc.contributor.authorVoß, M-
dc.date.accessioned2021-10-11T14:18:03Z-
dc.date.available2021-10-11T14:18:03Z-
dc.date.issued2017-03-01en_US
dc.identifier.citationBank, P, Soner, HM, Voß, M. (2017). Hedging with temporary price impact. Mathematics and Financial Economics, 11 (2), 215 - 239. doi:10.1007/s11579-016-0178-4en_US
dc.identifier.issn1862-9679-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1cc5r-
dc.description.abstract© 2016, Springer-Verlag Berlin Heidelberg. We consider the problem of hedging a European contingent claim in a Bachelier model with temporary price impact as proposed by Almgren and Chriss (J Risk 3:5–39, 2001). Following the approach of Rogers and Singh (Math Financ 20:597–615, 2010) and Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), the hedging problem can be regarded as a cost optimal tracking problem of the frictionless hedging strategy. We solve this problem explicitly for general predictable target hedging strategies. It turns out that, rather than towards the current target position, the optimal policy trades towards a weighted average of expected future target positions. This generalizes an observation of Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b) from their homogenous Markovian optimal investment problem to a general hedging problem. Our findings complement a number of previous studies in the literature on optimal strategies in illiquid markets as, e.g., Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b), Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), Rogers and Singh (Math Financ 20:597–615, 2010), Almgren and Li (Option hedging with smooth market impact. Preprint, 2015), Moreau et al. (Math Financ. doi:10.1111/mafi.12098, 2015), Kallsen and Muhle-Karbe (High-resilience limits of block-shaped order books. Preprint, 2014), Guasoni and Weber (Mathematical Financ. doi:10.1111/mafi.12099, 2015a; Nonlinear price impact and portfolio choice. Preprint, 2015b), where the frictionless hedging strategy is confined to diffusions. The consideration of general predictable reference strategies is made possible by the use of a convex analysis approach instead of the more common dynamic programming methods.en_US
dc.format.extent215 - 239en_US
dc.language.isoen_USen_US
dc.relation.ispartofMathematics and Financial Economicsen_US
dc.rightsAuthor's manuscripten_US
dc.titleHedging with temporary price impacten_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s11579-016-0178-4-
dc.identifier.eissn1862-9660-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Hedging with temporary price impact.pdf529.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.