Skip to main content

Sparse precision matrix estimation with calibration

Author(s): Zhao, T; Liu, H

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1cc4b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, T-
dc.contributor.authorLiu, H-
dc.date.accessioned2021-10-11T14:17:04Z-
dc.date.available2021-10-11T14:17:04Z-
dc.date.issued2013en_US
dc.identifier.citationZhao, Tuo, and Han Liu. "Sparse precision matrix estimation with calibration." In Advances in Neural Information Processing Systems 26, pp. 2274-2282. 2013.en_US
dc.identifier.issn1049-5258-
dc.identifier.urihttps://papers.nips.cc/paper/5173-sparse-inverse-covariance-estimation-with-calibration-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1cc4b-
dc.description.abstractWe propose a semiparametric procedure for estimating high dimensional sparse inverse covariance matrix. Our method, named ALICE, is applicable to the elliptical family. Computationally, we develop an efficient dual inexact iterative projection (D2P) algorithm based on the alternating direction method of multipliers (ADMM). Theoretically, we prove that the ALICE estimator achieves the parametric rate of convergence in both parameter estimation and model selection. Moreover, ALICE calibrates regularizations when estimating each column of the inverse covariance matrix. So it not only is asymptotically tuning free, but also achieves an improved finite sample performance. We present numerical simulations to support our theory, and a real data example to illustrate the effectiveness of the proposed estimator.en_US
dc.format.extent2274 - 2282en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvances in Neural Information Processing Systemsen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleSparse precision matrix estimation with calibrationen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
SparsePrecisionMatrixCalibration.pdf1.47 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.