Skip to main content

Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV

Author(s): Jeffrey, N; Abdalla, FB; Lahav, O; Lanusse, F; Starck, J-L; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1cc0ts96
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJeffrey, N-
dc.contributor.authorAbdalla, FB-
dc.contributor.authorLahav, O-
dc.contributor.authorLanusse, F-
dc.contributor.authorStarck, J-L-
dc.contributor.authorLeonard, A-
dc.contributor.authorKirk, D-
dc.contributor.authorChang, C-
dc.contributor.authorBaxter, E-
dc.contributor.authorKacprzak, T-
dc.contributor.authorSeitz, S-
dc.contributor.authorVikram, V-
dc.contributor.authorWhiteway, L-
dc.contributor.authorAbbott, TMC-
dc.contributor.authorAllam, S-
dc.contributor.authorAvila, S-
dc.contributor.authorBertin, E-
dc.contributor.authorBrooks, D-
dc.contributor.authorCarnero Rosell, A-
dc.contributor.authorKind, M Carrasco-
dc.contributor.authorCarretero, J-
dc.contributor.authorCastander, FJ-
dc.contributor.authorCrocce, M-
dc.contributor.authorCunha, CE-
dc.contributor.authorD Andrea, CB-
dc.contributor.authorda Costa, LN-
dc.contributor.authorDavis, C-
dc.contributor.authorDe Vicente, J-
dc.contributor.authorDesai, S-
dc.contributor.authorDoel, P-
dc.contributor.authorEifler, TF-
dc.contributor.authorEvrard, AE-
dc.contributor.authorFlaugher, B-
dc.contributor.authorFosalba, P-
dc.contributor.authorFrieman, J-
dc.contributor.authorGarcia-Bellido, J-
dc.contributor.authorGerdes, DW-
dc.contributor.authorGruen, D-
dc.contributor.authorGruendl, RA-
dc.contributor.authorGschwend, J-
dc.contributor.authorGutierrez, G-
dc.contributor.authorHartley, WG-
dc.contributor.authorHonscheid, K-
dc.contributor.authorHoyle, B-
dc.contributor.authorJames, DJ-
dc.contributor.authorJarvis, M-
dc.contributor.authorKuehn, K-
dc.contributor.authorLima, M-
dc.contributor.authorLin, H-
dc.contributor.authorMarch, M-
dc.contributor.authorMelchior, Peter M-
dc.contributor.authorMenanteau, F-
dc.contributor.authorMiquel, R-
dc.contributor.authorPlazas, AA-
dc.contributor.authorReil, K-
dc.contributor.authorRoodman, A-
dc.contributor.authorSanchez, E-
dc.contributor.authorScarpine, V-
dc.contributor.authorSchubnell, M-
dc.contributor.authorSevilla-Noarbe, I-
dc.contributor.authorSmith, M-
dc.contributor.authorSoares-Santos, M-
dc.contributor.authorSobreira, F-
dc.contributor.authorSuchyta, E-
dc.contributor.authorSwanson, MEC-
dc.contributor.authorTarle, G-
dc.contributor.authorThomas, D-
dc.contributor.authorWalker, AR-
dc.contributor.authorCollaboration, DES-
dc.date.accessioned2022-01-25T15:01:33Z-
dc.date.available2022-01-25T15:01:33Z-
dc.date.issued2018-09en_US
dc.identifier.citationJeffrey, N, Abdalla, FB, Lahav, O, Lanusse, F, Starck, J-L, Leonard, A, Kirk, D, Chang, C, Baxter, E, Kacprzak, T, Seitz, S, Vikram, V, Whiteway, L, Abbott, TMC, Allam, S, Avila, S, Bertin, E, Brooks, D, Carnero Rosell, A, Kind, M Carrasco, Carretero, J, Castander, FJ, Crocce, M, Cunha, CE, D Andrea, CB, da Costa, LN, Davis, C, De Vicente, J, Desai, S, Doel, P, Eifler, TF, Evrard, AE, Flaugher, B, Fosalba, P, Frieman, J, Garcia-Bellido, J, Gerdes, DW, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Hartley, WG, Honscheid, K, Hoyle, B, James, DJ, Jarvis, M, Kuehn, K, Lima, M, Lin, H, March, M, Melchior, P, Menanteau, F, Miquel, R, Plazas, AA, Reil, K, Roodman, A, Sanchez, E, Scarpine, V, Schubnell, M, Sevilla-Noarbe, I, Smith, M, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Thomas, D, Walker, AR, Collaboration, DES. (2018). Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 479 (2871 - 2888. doi:10.1093/mnras/sty1252en_US
dc.identifier.issn0035-8711-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1cc0ts96-
dc.description.abstractMapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. Kaiser-Squires is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. GLIMPSE uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and GLIMPSE offer substantial improvements over smoothed Kaiser-Squires with a range of metrics. Both the Wiener filter and GLIMPSE convergence reconstructions show a 12 per cent improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods’ abilities to find mass peaks, we measure the difference between peak counts from simulated Lambda CDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for GLIMPSE. With simulations, we measure the reconstruction of the harmonic phases; the phase residuals’ concentration is improved 17 per cent by GLIMPSE and 18 per cent by the Wiener filter. The correlation between reconstructions from data and foreground redMaPPer clusters is increased 18 per cent by the Wiener filter and 32 per cent by GLIMPSE.en_US
dc.format.extent2871 - 2888en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2018MNRAS.479.2871J/abstracten_US
dc.relation.ispartofMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleImproving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SVen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/mnras/sty1252-
dc.date.eissued2018-05-15en_US
dc.identifier.eissn1365-2966-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
sty1252.pdf7.63 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.