Skip to main content

Aspects of CFTs on real projective space

Author(s): Giombi, Simone; Khanchandani, Himanshu; Zhou, Xinan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1c824f2g
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiombi, Simone-
dc.contributor.authorKhanchandani, Himanshu-
dc.contributor.authorZhou, Xinan-
dc.date.accessioned2024-04-23T17:34:23Z-
dc.date.available2024-04-23T17:34:23Z-
dc.date.issued2020-12-18en_US
dc.identifier.citationGiombi, Simone, Khanchandani, Himanshu, Zhou, Xinan. (2021). Aspects of CFTs on real projective space. Journal of Physics A: Mathematical and Theoretical, 54 (2), 024003 - 024003. doi:10.1088/1751-8121/abcf59en_US
dc.identifier.issn1751-8113-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1c824f2g-
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We present an analytic study of conformal field theories on the real projective space <jats:inline-formula> <jats:tex-math><?CDATA $\mathbb{R}{\mathbb{P}}^{d}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi mathvariant="double-struck">R</mml:mi> <mml:msup> <mml:mrow> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aabcf59ieqn7.gif" xlink:type="simple" /> </jats:inline-formula>, focusing on the two-point functions of scalar operators. Due to the partially broken conformal symmetry, these are non-trivial functions of a conformal cross ratio and are constrained to obey a crossing equation. After reviewing basic facts about the structure of correlators on <jats:inline-formula> <jats:tex-math><?CDATA $\mathbb{R}{\mathbb{P}}^{d}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi mathvariant="double-struck">R</mml:mi> <mml:msup> <mml:mrow> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aabcf59ieqn8.gif" xlink:type="simple" /> </jats:inline-formula>, we study a simple holographic setup which captures the essential features of boundary correlators on <jats:inline-formula> <jats:tex-math><?CDATA $\mathbb{R}{\mathbb{P}}^{d}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi mathvariant="double-struck">R</mml:mi> <mml:msup> <mml:mrow> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aabcf59ieqn9.gif" xlink:type="simple" /> </jats:inline-formula>. The analysis is based on calculations of Witten diagrams on the quotient space <jats:inline-formula> <jats:tex-math><?CDATA ${\mathrm{A}\mathrm{d}\mathrm{S}}_{d+1}/{\mathbb{Z}}_{2}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">A</mml:mi> <mml:mi mathvariant="normal">d</mml:mi> <mml:mi mathvariant="normal">S</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>/</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aabcf59ieqn10.gif" xlink:type="simple" /> </jats:inline-formula>, and leads to an analytic approach to two-point functions. In particular, we argue that the structure of the conformal block decomposition of the exchange Witten diagrams suggests a natural basis of analytic functionals, whose action on the conformal blocks turns the crossing equation into certain sum rules. We test this approach in the canonical example of <jats:italic>ϕ</jats:italic> <jats:sup>4</jats:sup> theory in dimension <jats:italic>d</jats:italic> = 4 − <jats:italic>ϵ</jats:italic>, extracting the CFT data to order <jats:italic>ϵ</jats:italic> <jats:sup>2</jats:sup>. We also check our results by standard field theory methods, both in the large <jats:italic>N</jats:italic> and <jats:italic>ϵ</jats:italic> expansions. Finally, we briefly discuss the relation of our analysis to the problem of construction of local bulk operators in AdS/CFT.</jats:p>en_US
dc.format.extent024003 - 024003en_US
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen_US
dc.rightsAuthor's manuscripten_US
dc.subjectconformal field theory, conformal bootstrap, AdS/CFT correspondenceen_US
dc.titleAspects of CFTs on real projective spaceen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/1751-8121/abcf59-
dc.date.eissued2020-12-18en_US
dc.identifier.eissn1751-8121-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
2009.03290.pdf1.54 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.