ORBIT PARAMETRIZATIONS FOR K3 SURFACES
Author(s): Bhargava, Manjul; Ho, Wei; Kumar, Abhinav
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1c438
Abstract: | We study moduli spaces of lattice-polarized K3 surfaces in terms of orbits of representations of algebraic groups. In particular, over an algebraically closed field of characteristic 0, we show that in many cases, the nondegenerate orbits of a representation are in bijection with K3 surfaces (up to suitable equivalence) whose Néron–Severi lattice contains a given lattice. An immediate consequence is that the corresponding moduli spaces of these lattice-polarized K3 surfaces are all unirational. Our constructions also produce many fixed-point-free automorphisms of positive entropy on K3 surfaces in various families associated to these representations, giving a natural extension of recent work of Oguiso. |
Publication Date: | 7-Jul-2016 |
Citation: | Bhargava, Manjul, Ho, Wei, Kumar, Abhinav. (2016). ORBIT PARAMETRIZATIONS FOR K3 SURFACES. FORUM OF MATHEMATICS SIGMA, 4, doi:10.1017/fms.2016.12 |
DOI: | doi:10.1017/fms.2016.12 |
ISSN: | 2050-5094 |
Pages: | 1 - 86 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | FORUM OF MATHEMATICS SIGMA |
Version: | Final published version. This is an open access article. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.