Skip to main content

Accurate measurements of dynamics and reproducibility in small genetic networks

Author(s): Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1bw7x
Abstract: Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than similar to 20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with similar to 1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. Molecular Systems Biology 9: 639; published online 22 January 2013; doi:10.1038/msb.2012.72
Publication Date: Jan-2013
Electronic Publication Date: 22-Jan-2013
Citation: Dubuis, Julien O, Samanta, Reba, Gregor, Thomas. (2013). Accurate measurements of dynamics and reproducibility in small genetic networks. MOLECULAR SYSTEMS BIOLOGY, 9 (10.1038/msb.2012.72
DOI: doi:10.1038/msb.2012.72
ISSN: 1744-4292
Pages: 639:1-15
Type of Material: Journal Article
Journal/Proceeding Title: MOLECULAR SYSTEMS BIOLOGY
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.