Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval
Author(s): Chen, Yuxin; Chi, Y; Fan, Jianqing; Ma, C
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1bw1f
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Yuxin | - |
dc.contributor.author | Chi, Y | - |
dc.contributor.author | Fan, Jianqing | - |
dc.contributor.author | Ma, C | - |
dc.date.accessioned | 2021-10-11T14:17:36Z | - |
dc.date.available | 2021-10-11T14:17:36Z | - |
dc.date.issued | 2019-07-01 | en_US |
dc.identifier.citation | Chen, Y, Chi, Y, Fan, J, Ma, C. (2019). Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval. Mathematical Programming, 176 (1-2), 5 - 37. doi:10.1007/s10107-019-01363-6 | en_US |
dc.identifier.issn | 0025-5610 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1bw1f | - |
dc.description.abstract | © 2019, Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society. This paper considers the problem of solving systems of quadratic equations, namely, recovering an object of interest x♮∈ Rn from m quadratic equations/samples yi=(ai⊤x♮)2,1≤i≤m. This problem, also dubbed as phase retrieval, spans multiple domains including physical sciences and machine learning. We investigate the efficacy of gradient descent (or Wirtinger flow) designed for the nonconvex least squares problem. We prove that under Gaussian designs, gradient descent—when randomly initialized—yields an ϵ-accurate solution in O(log n+ log (1 / ϵ)) iterations given nearly minimal samples, thus achieving near-optimal computational and sample complexities at once. This provides the first global convergence guarantee concerning vanilla gradient descent for phase retrieval, without the need of (i) carefully-designed initialization, (ii) sample splitting, or (iii) sophisticated saddle-point escaping schemes. All of these are achieved by exploiting the statistical models in analyzing optimization algorithms, via a leave-one-out approach that enables the decoupling of certain statistical dependency between the gradient descent iterates and the data. | en_US |
dc.format.extent | 5 - 37 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Mathematical Programming | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s10107-019-01363-6 | - |
dc.identifier.eissn | 1436-4646 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gradient descent with random initialization fast global convergence for nonconvex phase retrieval.pdf | 4.55 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.