Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions
Author(s): Drake, Henri F; Morrison, Adele K; Griffies, Stephen M; Sarmiento, Jorge L; Weijer, Wlbert; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1bv79v36
Abstract: | In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high‐resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse‐resolution models, potentially affecting the skill of centennial scale climate change projections. |
Publication Date: | 22-Jan-2018 |
Citation: | Drake, Henri F., Adele K. Morrison, Stephen M. Griffies, Jorge L. Sarmiento, Wilbert Weijer, and Alison R. Gray. "Lagrangian timescales of Southern Ocean upwelling in a hierarchy of model resolutions." Geophysical Research Letters 45, no. 2 (2018): 891-898. doi:10.1002/2017GL076045. |
DOI: | doi:10.1002/2017GL076045 |
ISSN: | 0094-8276 |
EISSN: | 1944-8007 |
Pages: | 891 - 898 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Geophysical Research Letters |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.