Gravity amplitudes from a Gaussian matrix model
Author(s): Heckman, Jonathan J.; Verlinde, Herman L.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1bq3c
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Heckman, Jonathan J. | - |
dc.contributor.author | Verlinde, Herman L. | - |
dc.date.accessioned | 2019-04-04T16:24:30Z | - |
dc.date.available | 2019-04-04T16:24:30Z | - |
dc.date.issued | 2013-09-27 | en_US |
dc.identifier.citation | Heckman, Jonathan J., Verlinde, Herman L. (2013). Gravity amplitudes from a Gaussian matrix model. JOURNAL OF HIGH ENERGY PHYSICS, doi:10.1007/JHEP09(2013)150 | en_US |
dc.identifier.issn | 1029-8479 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1bq3c | - |
dc.description.abstract | We reformulate MHV scattering amplitudes in 4D gauge theory and super-gravity as correlation functions of bilinear operators in a supersymmetric gaussian matrix model. The model retains the symmetries of an S 4 of radius l and the matrix variables are represented as linear operators acting on a finite-dimensional Hilbert space. Bilinear fields of the model generate a current algebra. In the large N double scaling limit where l(pl) similar to l/root N is held fixed, there is an emergent flat 4D space-time with a built in short distance cutoff. | en_US |
dc.format.extent | 1 - 42 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | JOURNAL OF HIGH ENERGY PHYSICS | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | Gravity amplitudes from a Gaussian matrix model | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/JHEP09(2013)150 | - |
dc.date.eissued | 2013-09-27 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Heckman-Verlinde2013_Article_GravityAmplitudesFromAGaussian.pdf | 718.98 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.