To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1bp2k
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rácz, Miklos Z | - |
dc.contributor.author | Richey, J | - |
dc.date.accessioned | 2021-10-11T14:17:51Z | - |
dc.date.available | 2021-10-11T14:17:51Z | - |
dc.date.issued | 2019-06-01 | en_US |
dc.identifier.citation | Rácz, MZ, Richey, J. (2019). A Smooth Transition from Wishart to GOE. Journal of Theoretical Probability, 32 (2), 898 - 906. doi:10.1007/s10959-018-0808-2 | en_US |
dc.identifier.issn | 0894-9840 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1bp2k | - |
dc.description.abstract | © 2018, Springer Science+Business Media, LLC, part of Springer Nature. It is well known that an n× n Wishart matrix with d degrees of freedom is close to the appropriately centered and scaled Gaussian orthogonal ensemble (GOE) if d is large enough. Recent work of Bubeck, Ding, Eldan, and Racz, and independently Jiang and Li, shows that the transition happens when d= Θ (n 3 ). Here we consider this critical window and explicitly compute the total variation distance between the Wishart and GOE matrices when d/ n 3 → c∈ (0 , ∞). This shows, in particular, that the phase transition from Wishart to GOE is smooth. | en_US |
dc.format.extent | 898 - 906 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Journal of Theoretical Probability | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | A Smooth Transition from Wishart to GOE | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s10959-018-0808-2 | - |
dc.identifier.eissn | 1572-9230 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A Smooth Transition from Wishart to GOE.pdf | 303.96 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.