Skip to main content

Cutoff for the Bernoulli-Laplace urn model with o(n) swaps

Author(s): Eskenazis, Alexandros; Nestoridi, Evita

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1bg2h94f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEskenazis, Alexandros-
dc.contributor.authorNestoridi, Evita-
dc.date.accessioned2023-12-11T18:17:19Z-
dc.date.available2023-12-11T18:17:19Z-
dc.date.issued2020-11en_US
dc.identifier.citationEskenazis, Alexandros, Nestoridi, Evita. (2020). Cutoff for the Bernoulli-Laplace urn model with o(n) swaps. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56 (2621 - 2639. doi:10.1214/20-AIHP1052en_US
dc.identifier.issn0246-0203-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1bg2h94f-
dc.description.abstractWe study the mixing time of the (n, k) Bernoulli-Laplace urn model, where k is an element of 0, 1,..., n. Consider two urns, each containing n balls, so that when combined they have precisely n red balls and n white balls. At each step of the process choose uniformly at random k balls from the left urn and k balls from the right urn and switch them simultaneously. We show that if k = o(n), this Markov chain exhibits mixing time cutoff at n/4k log n and window of the order n/k log log n. This is an extension of a classical theorem of Diaconis and Shahshahani who treated the case k = 1.en_US
dc.format.extent2621 - 2639en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUESen_US
dc.rightsAuthor's manuscripten_US
dc.titleCutoff for the Bernoulli-Laplace urn model with o(n) swapsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/20-AIHP1052-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1805.07803.pdf470.95 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.