Cutoff for the Bernoulli-Laplace urn model with o(n) swaps
Author(s): Eskenazis, Alexandros; Nestoridi, Evita
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1bg2h94f
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eskenazis, Alexandros | - |
dc.contributor.author | Nestoridi, Evita | - |
dc.date.accessioned | 2023-12-11T18:17:19Z | - |
dc.date.available | 2023-12-11T18:17:19Z | - |
dc.date.issued | 2020-11 | en_US |
dc.identifier.citation | Eskenazis, Alexandros, Nestoridi, Evita. (2020). Cutoff for the Bernoulli-Laplace urn model with o(n) swaps. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56 (2621 - 2639. doi:10.1214/20-AIHP1052 | en_US |
dc.identifier.issn | 0246-0203 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1bg2h94f | - |
dc.description.abstract | We study the mixing time of the (n, k) Bernoulli-Laplace urn model, where k is an element of 0, 1,..., n. Consider two urns, each containing n balls, so that when combined they have precisely n red balls and n white balls. At each step of the process choose uniformly at random k balls from the left urn and k balls from the right urn and switch them simultaneously. We show that if k = o(n), this Markov chain exhibits mixing time cutoff at n/4k log n and window of the order n/k log log n. This is an extension of a classical theorem of Diaconis and Shahshahani who treated the case k = 1. | en_US |
dc.format.extent | 2621 - 2639 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Cutoff for the Bernoulli-Laplace urn model with o(n) swaps | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1214/20-AIHP1052 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1805.07803.pdf | 470.95 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.