Skip to main content

Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

Author(s): Wang, Ran; Momjian, Emmanuel; Carilli, Chris L; Wu, Xue-Bing; Fan, Xiaohui; et al

To refer to this page use:
Abstract: We report Very Long Baseline Array (VLBA)observations of the 1.5 GHz radio continuum emission of the z=6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z>6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6±9.0 μJy beam−1 and a total flux density of 88±19 μJy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ±3.5)mas×(3.1 ±1.7)mas. This corresponds to a physical scale of (40 ±20)pc×(18 ±10)pc. We estimate the intrinsic brightness temperature of the VLBA source to be TB=(1.6 ±1.2)×107 K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN)origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.
Publication Date: 25-Jan-2017
Electronic Publication Date: 1-Feb-2017
Citation: Wang, Ran, Momjian, Emmanuel, Carilli, Chris L, Wu, Xue-Bing, Fan, Xiaohui, Walter, Fabian, Strauss, Michael A, Wang, Feige, Jiang, Linhua. (2017). Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization. \apjl, 835 (L20 - L20. doi:10.3847/2041-8213/835/2/L20
DOI: doi:10.3847/2041-8213/835/2/L20
Related Item:
Type of Material: Journal Article
Journal/Proceeding Title: Astrophysical Journal Letters
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.