Skip to main content

Improved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Model

Author(s): Zhang, Wei; Vecchi, Gabriel A; Murakami, Hiroyuki; Delworth, Thomas; Wittenberg, Andrew T; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1b853h6z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Wei-
dc.contributor.authorVecchi, Gabriel A-
dc.contributor.authorMurakami, Hiroyuki-
dc.contributor.authorDelworth, Thomas-
dc.contributor.authorWittenberg, Andrew T-
dc.contributor.authorRosati, Anthony-
dc.contributor.authorUnderwood, Seth-
dc.contributor.authorAnderson, Whit-
dc.contributor.authorHarris, Lucas-
dc.contributor.authorGudgel, Richard-
dc.contributor.authorLin, Shian-Jiann-
dc.contributor.authorVillarini, Gabriele-
dc.contributor.authorChen, Jan-Huey-
dc.date.accessioned2022-01-25T15:00:00Z-
dc.date.available2022-01-25T15:00:00Z-
dc.date.issued2016-02-15en_US
dc.identifier.citationZhang, Wei, Gabriel A. Vecchi, Hiroyuki Murakami, Thomas Delworth, Andrew T. Wittenberg, Anthony Rosati, Seth Underwood et al. "Improved simulation of tropical cyclone responses to ENSO in the western North Pacific in the high-resolution GFDL HiFLOR coupled climate model." Journal of Climate 29, no. 4 (2016): 1391-1415. doi:10.1175/JCLI-D-15-0475.1.en_US
dc.identifier.issn0894-8755-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1b853h6z-
dc.description.abstractThis study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.en_US
dc.format.extent1391 - 1415en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Climateen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleImproved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Modelen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1175/JCLI-D-15-0475.1-
dc.identifier.eissn1520-0442-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Improved_simulation_tropical_cyclone_responses_ENSO_western_north_pacific_high-resolution_GFDL_HiFLOR_coupled_climate_model.pdf4.91 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.