Skip to main content

3D Printed Anatomical Nerve Regeneration Pathways

Author(s): Johnson, Blake N; Lancaster, Karen Z; Zhen, Gehua; He, Junyun; Gupta, Maneesh K; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1b56d480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJohnson, Blake N-
dc.contributor.authorLancaster, Karen Z-
dc.contributor.authorZhen, Gehua-
dc.contributor.authorHe, Junyun-
dc.contributor.authorGupta, Maneesh K-
dc.contributor.authorKong, Yong Lin-
dc.contributor.authorEngel, Esteban A-
dc.contributor.authorKrick, Kellin D-
dc.contributor.authorJu, Alex-
dc.contributor.authorMeng, Fanben-
dc.contributor.authorEnquist, Lynn W-
dc.contributor.authorJia, Xiaofeng-
dc.contributor.authorMcAlpine, Michael C-
dc.date.accessioned2024-03-03T04:43:43Z-
dc.date.available2024-03-03T04:43:43Z-
dc.date.issued2015-09-18en_US
dc.identifier.citationJohnson, Blake N, Lancaster, Karen Z, Zhen, Gehua, He, Junyun, Gupta, Maneesh K, Kong, Yong Lin, Engel, Esteban A, Krick, Kellin D, Ju, Alex, Meng, Fanben, Enquist, Lynn W, Jia, Xiaofeng, McAlpine, Michael C. (2015). 3D Printed Anatomical Nerve Regeneration Pathways. Advanced Functional Materials, 25 (39), 6205 - 6217. doi:10.1002/adfm.201501760en_US
dc.identifier.issn1616-301X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1b56d480-
dc.description.abstractA 3D printing methodology for the design, optimization, and fabrication of a custom nerve repair technology for the regeneration of complex peripheral nerve injuries containing bifurcating sensory and motor nerve pathways is introduced. The custom scaffolds are deterministically fabricated via a microextrusion printing principle using 3D models, which are reverse engineered from patient anatomies by 3D scanning. The bifurcating pathways are augmented with 3D printed biomimetic physical cues (microgrooves) and path-specific biochemical cues (spatially controlled multicomponent gradients). In vitro studies reveal that 3D printed physical and biochemical cues provide axonal guidance and chemotractant/chemokinetic functionality. In vivo studies examining the regeneration of bifurcated injuries across a 10 mm complex nerve gap in rats showed that the 3D printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve. This approach suggests the potential of 3D printing toward advancing tissue regeneration in terms of: (1) the customization of scaffold geometries to match inherent tissue anatomies; (2) the integration of biomanufacturing approaches with computational modeling for design, analysis, and optimization; and (3) the enhancement of device properties with spatially controlled physical and biochemical functionalities, all enabled by the same 3D printing process.en_US
dc.format.extent6205 - 6217en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvanced Functional Materialsen_US
dc.rightsAuthor's manuscripten_US
dc.title3D Printed Anatomical Nerve Regeneration Pathwaysen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1002/adfm.201501760-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
3D Printed Anatomical Nerve Regeneration Pathways.pdf1.41 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.