Skip to main content
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1b27pr50
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHackenbroich, Anna-
dc.contributor.authorHudomal, Ana-
dc.contributor.authorSchuch, Norbert-
dc.contributor.authorBernevig, Bogdan A.-
dc.contributor.authorRegnault, Nicolas-
dc.date.accessioned2024-03-11T19:40:32Z-
dc.date.available2024-03-11T19:40:32Z-
dc.date.issued2021-04-23en_US
dc.identifier.issn2469-9950-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1b27pr50-
dc.description.abstractWe propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two non-interacting second order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and chargespin-fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge c = 1 and Luttinger parameter K = 1/2, like the edge modes of a Laughlin 1/2 state. By changing the boundary conditions for the underlying fermions, we investigate the topological degeneracy of the FCHI. Within the range of the numerically accessible system sizes, we observe a non-trivial topological degeneracy. A more numerically pristine characterization of the bulk topology is provided by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host a two-dimensional topological order with a TEE per surface compatible with half that of a Laughlin 1/2 state, a value that cannot be obtained from topological quantum field theory.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleFractional chiral hinge insulatoren_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/physrevb.103.l161110-
dc.identifier.eissn2469-9969-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
2010.09728.pdf1.61 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.