The Emergent 1.1-1.7 μm Spectrum of the Exoplanet CoRoT-2b as Measured Using the Hubble Space Telescope
Author(s): Wilkins, Ashlee N; Deming, Drake; Madhusudhan, Nikku; Burrows, Adam S.; Knutson, Heather A.; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr19t2r
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wilkins, Ashlee N | - |
dc.contributor.author | Deming, Drake | - |
dc.contributor.author | Madhusudhan, Nikku | - |
dc.contributor.author | Burrows, Adam S. | - |
dc.contributor.author | Knutson, Heather A. | - |
dc.contributor.author | McCullough, Peter | - |
dc.contributor.author | Ranjan, Sukrit | - |
dc.date.accessioned | 2019-04-10T19:31:46Z | - |
dc.date.available | 2019-04-10T19:31:46Z | - |
dc.date.issued | 2014-03-10 | en_US |
dc.identifier.citation | Wilkins, Ashlee N, Deming, Drake, Madhusudhan, Nikku, Burrows, Adam, Knutson, Heather, McCullough, Peter, Ranjan, Sukrit. (2014). The Emergent 1.1-1.7 \ensuremathμm Spectrum of the Exoplanet CoRoT-2b as Measured Using the Hubble Space Telescope. apj, 783 (113 - 113. doi:10.1088/0004-637X/783/2/113 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr19t2r | - |
dc.description.abstract | We have used Hubble/WFC3 and the G141 grism to measure the secondary eclipse of the transiting, very hot Jupiter CoRoT-2b in the 1.1–1.7μm spectral region. We find an eclipse depth averaged over this band equal to 395+69−45parts per million, equivalent to a blackbody temperature of 1788±18 K. We study and characterize several WFC3 instrumental effects, especially the “hook” phenomenon described by Deming et al. We use data from several transiting exoplanet systems to find a quantitative relation between the amplitude of the hook and the exposure level of a given pixel. Although the uncertainties in this relation are too large to allow us to develop an empirical correction for our data, our study provides a useful guide for optimizing exposure levels in future WFC3 observations. We derive the planet’s spectrum using a differential method. The planet-to-star contrast increases to longer wavelength within the WFC3 bandpass, but without water absorption or emission to a 3σlimit of 85 ppm. The slope of theWFC3 spectrum is significantly less than the slope of the best-fit blackbody. We compare all existing eclipse data for this planet to a blackbody spectrum, and to spectra from both solar abundance and carbon-rich (C/O=1) models.A blackbody spectrum is an acceptable fit to the full data set. Extra continuous opacity due to clouds or haze, and flattened temperature profiles, are strong candidates to produce quasi-blackbody spectra, and to account for the amplitude of the optical eclipses. Our results show ambiguous evidence for a temperature inversion in this planet. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Astrophysical Journal | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | The Emergent 1.1-1.7 μm Spectrum of the Exoplanet CoRoT-2b as Measured Using the Hubble Space Telescope | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1088/0004-637X/783/2/113 | - |
dc.date.eissued | 2014-02-21 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wilkins_2014_ApJ_783_113.pdf | 2.28 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.