Maximum independent sets on random regular graphs
Author(s): Ding, Jian; Sly, Allan M.; Sun, Nike
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr19m5q
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ding, Jian | - |
dc.contributor.author | Sly, Allan M. | - |
dc.contributor.author | Sun, Nike | - |
dc.date.accessioned | 2019-04-05T20:00:30Z | - |
dc.date.available | 2019-04-05T20:00:30Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.citation | Ding, Jian, Sly, Allan M., Sun, Nike. (2016). Maximum independent sets on random regular graphs. ACTA MATHEMATICA, 217 (263 - 340). doi:10.1007/s11511-017-0145-9 | en_US |
dc.identifier.issn | 0001-5962 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr19m5q | - |
dc.description.abstract | We determine the asymptotics of the independence number of the random d-regular graph for all d≥d0. It is highly concentrated, with constant-order fluctuations around nα∗−c∗logn for explicit constants α∗(d) and c∗(d). Our proof rigorously confirms the one-step replica symmetry breaking heuristics for this problem, and we believe the techniques will be more broadly applicable to the study of other combinatorial properties of random graphs. | en_US |
dc.format.extent | 263 - 340 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ACTA MATHEMATICA | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Maximum independent sets on random regular graphs | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s11511-017-0145-9 | - |
dc.date.eissued | 2016 | en_US |
dc.identifier.eissn | 1871-2509 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1310.4787.pdf | 1.3 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.