Skip to main content

Ruling out bosonic repulsive dark matter in thermal equilibrium

Author(s): Slepian, Zachary; Goodman, Jeremy J.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19j0w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSlepian, Zachary-
dc.contributor.authorGoodman, Jeremy J.-
dc.date.accessioned2019-08-05T18:19:50Z-
dc.date.available2019-08-05T18:19:50Z-
dc.date.issued2012-11-21en_US
dc.identifier.citationSlepian, Zachary, Goodman, Jeremy. (2012). Ruling out bosonic repulsive dark matter in thermal equilibrium. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 427 (839 - 849. doi:10.1111/j.1365-2966.2012.21901.xen_US
dc.identifier.issn0035-8711-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19j0w-
dc.description.abstractSelf-interacting dark matter, especially bosonic, has been considered a promising candidate to replace cold dark matter (CDM) as it resolves some of the problems associated with CDM. Here, we rule out the possibility that dark matter is a repulsive boson in thermal equilibrium. We develop the model first proposed by Goodman in 2000 and derive the equation of state at finite temperature. Isothermal spherical halo models indicate a BoseEinstein condensed core surrounded by a non-degenerate envelope, with an abrupt density drop marking the boundary between the two phases. Comparing this feature with observed rotation curves constrains the interaction strength of our model’s dark matter particle, and Bullet Cluster measurements constrain the scattering cross-section. Both ultimately can be cast as constraints on the particle’s mass. We find these two constraints cannot be satisfied simultaneously in any realistic halo model and hence dark matter cannot be a repulsive boson in thermal equilibrium. It is still left open that dark matter may be a repulsive boson provided it is not in thermal equilibrium; this requires that the mass of the particle be significantly less than a millivolt.en_US
dc.format.extent839 - 849en_US
dc.language.isoen_USen_US
dc.relationhttp://simbad.u-strasbg.fr/simbad/sim-ref?querymethod=bib&simbo=on&submit=submit+bibcode&bibcode=2012MNRAS.427..839Sen_US
dc.relation.ispartofMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleRuling out bosonic repulsive dark matter in thermal equilibriumen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1111/j.1365-2966.2012.21901.x-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
427-1-839.pdf667.45 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.