Skip to main content

Edge-colouring seven-regular planar graphs

Author(s): Chudnovsky, Maria; Edwards, Katherine; Kawarabayashi, Ken-ichi; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19g71
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorEdwards, Katherine-
dc.contributor.authorKawarabayashi, Ken-ichi-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2017-04-04T20:14:09Z-
dc.date.available2017-04-04T20:14:09Z-
dc.date.issued2015-11en_US
dc.identifier.citationM. Chudnovsky, K. Edwards, K. Kawarabayashi, P. Seymour, Edge-colouring seven-regular planar graphs, J. Combin. Theory Ser. B 115 (2015) 276–302.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19g71-
dc.description.abstractA conjecture due to the fourth author states that every $d$-regular planar multigraph can be $d$-edge-coloured, provided that for every odd set $X$ of vertices, there are at least $d$ edges between $X$ and its complement. For $d = 3$ this is the four-colour theorem, and the conjecture has been proved for all $d\le 8$, by various authors. In particular, two of us proved it when $d=7$; and then three of us proved it when $d=8$. The methods used for the latter give a proof in the $d=7$ case that is simpler than the original, and we present it here.en_US
dc.format.extent276-302en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of combinatorial theory. Series B.en_US
dc.rightsAuthor's manuscripten_US
dc.titleEdge-colouring seven-regular planar graphsen_US
dc.typeJournal Articleen_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.jctb.2014.11.005-
dc.date.eissued2015-06-09en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1210.7349v1.pdf250.79 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.