Skip to main content

Colouring perfect graphs with bounded clique number

Author(s): Chudnovsky, Maria; Lagoutte, Aurelie; Seymour, Paul D.; Spirkl, Sophie

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1996q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorLagoutte, Aurelie-
dc.contributor.authorSeymour, Paul D.-
dc.contributor.authorSpirkl, Sophie-
dc.date.accessioned2018-07-20T15:09:02Z-
dc.date.available2018-07-20T15:09:02Z-
dc.date.issued2017-01en_US
dc.identifier.citationChudnovsky, Maria, Lagoutte, Aurelie, Seymour, Paul, Spirkl, Sophie. (2017). Colouring perfect graphs with bounded clique number. JOURNAL OF COMBINATORIAL THEORY SERIES B, 122 (757 - 775. doi:10.1016/j.jctb.2016.09.006en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1996q-
dc.description.abstractA graph is perfect if the chromatic number of every induced subgraph equals the size of its largest clique, and an algorithm of Grotschel, Lovasz, and Schrijver [9] from 1988 finds an optimal colouring of a perfect graph in polynomial time. But this algorithm uses the ellipsoid method, and it is a well-known open question to construct a “combinatorial” polynomial-time algorithm that yields an optimal colouring of a perfect graph. A skew partition in G is a partition (A, B) of V(G) such that G[A] is not connected and G[B] is not connected, where G denotes the complement graph; and it is balanced if an additional parity condition on certain paths in G and G is satisfied. In this paper we first give a polynomial-time algorithm that, with input a perfect graph, outputs a balanced skew partition if there is one. Then we use this to obtain a combinatorial algorithm that finds an optimal colouring of a perfect graph with clique number k, in time that is polynomial for fixed k. (C) 2016 Elsevier Inc. All rights reserved.en_US
dc.format.extent757 - 775en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleColouring perfect graphs with bounded clique numberen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2016.09.006-
dc.date.eissued2016-09-28en_US
dc.identifier.eissn1096-0902-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1707.03747.pdf161.58 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.