Skip to main content

Exact correlators on the Wilson loop in $$ \mathcal{N}=4 $$ SYM: localization, defect CFT, and integrability

Author(s): Giombi, Simone; Komatsu, Shota

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19882n28
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiombi, Simone-
dc.contributor.authorKomatsu, Shota-
dc.date.accessioned2024-04-24T18:29:51Z-
dc.date.available2024-04-24T18:29:51Z-
dc.date.issued2018-05-16en_US
dc.identifier.citationGiombi, Simone, Komatsu, Shota. (2018). Exact correlators on the Wilson loop in $$ \mathcal{N}=4 $$ SYM: localization, defect CFT, and integrability. Journal of High Energy Physics, 2018 (5), 10.1007/jhep05(2018)109en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19882n28-
dc.description.abstract<jats:title>A<jats:sc>bstract</jats:sc> </jats:title> <jats:p>We compute a set of correlation functions of operator insertions on the 1<jats:italic>/</jats:italic>8 BPS Wilson loop in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$ \mathcal{N}=4 $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:math> </jats:alternatives> </jats:inline-formula> SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the ’t Hooft coupling and the rank of the gauge group. When applied to the 1<jats:italic>/</jats:italic>2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS<jats:sub>2</jats:sub> string worldsheet. We also explain the connection of our results to the “generalized Bremsstrahlung functions” previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite <jats:italic>N</jats:italic> generalization. Furthermore, we show that the correlators at large <jats:italic>N</jats:italic> can be recast as simple integrals of products of polynomials (known as <jats:italic>Q</jats:italic>-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.</jats:p>en_US
dc.languageenen_US
dc.relation.ispartofJournal of High Energy Physicsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.subjectAdS-CFT Correspondence, Conformal Field Theory, Supersymmetric Gauge Theory, Wilson, ’t Hooft and Polyakov loopsen_US
dc.titleExact correlators on the Wilson loop in $$ \mathcal{N}=4 $$ SYM: localization, defect CFT, and integrabilityen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/jhep05(2018)109-
dc.date.eissued2018-05-16en_US
dc.identifier.eissn1029-8479-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
JHEP05(2018)109.pdf875.72 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.