Skip to main content

Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models

Author(s): Constantin, Peter; Vicol, Vlad C.; Wu, Jiahong

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1964r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConstantin, Peter-
dc.contributor.authorVicol, Vlad C.-
dc.contributor.authorWu, Jiahong-
dc.date.accessioned2017-11-21T19:18:19Z-
dc.date.available2017-11-21T19:18:19Z-
dc.date.issued2015-11-05en_US
dc.identifier.citationConstantin, Peter, Vicol, Vlad, Wu, Jiahong. (2015). Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models. ADVANCES IN MATHEMATICS, 285 (352 - 393. doi:10.1016/j.aim.2015.05.019en_US
dc.identifier.issn0001-8708-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1964r-
dc.description.abstractWe discuss general incompressible inviscid models, including the Euler equations, the surface quasi-geostrophic equation, incompressible porous medium equation, and Boussinesq equations. All these models have classical unique solutions, at least for short time. We show that they have real analytic Lagrangian paths. More precisely, we show that as long as a solution of any of these equations is in a class of regularity that assures Hölder continuous gradients of velocity, the corresponding Lagrangian paths are real analytic functions of time. The method of proof is conceptually straightforward and general, and we address the combinatorial issues head-on.en_US
dc.format.extent352 - 393en_US
dc.language.isoenen_US
dc.relation.ispartofADVANCES IN MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleAnalyticity of Lagrangian trajectories for well posed inviscid incompressible fluid modelsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.aim.2015.05.019-
dc.date.eissued2015-08-28en_US
dc.identifier.eissn1090-2082-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1403.5749v2.pdf274.93 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.