Bipartite Minors
Author(s): Chudnovsky, Maria; Kalai, Gil; Nevo, Eran; Novik, Isabella; Seymour, Paul D.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr19032
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chudnovsky, Maria | - |
dc.contributor.author | Kalai, Gil | - |
dc.contributor.author | Nevo, Eran | - |
dc.contributor.author | Novik, Isabella | - |
dc.contributor.author | Seymour, Paul D. | - |
dc.date.accessioned | 2017-04-04T20:18:09Z | - |
dc.date.available | 2017-04-04T20:18:09Z | - |
dc.date.issued | 2016-01 | en_US |
dc.identifier.citation | M. Chudnovsky, G. Kalai, E. Nevo, I. Novik, and P. Seymour, Bipartite minors , J. Combin. Theory Ser. B, to appear, DOI 10.1016/j.jctb.2015.08.001. | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr19032 | - |
dc.description.abstract | We introduce a notion of bipartite minors and prove a bipartite analog of Wagner's theorem: a bipartite graph is planar if and only if it does not contain $K_{3,3}$ as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite $(2,2)$-Laman graphs --- a certain family of graphs that contains all maximal bipartite planar graphs. | en_US |
dc.format.extent | 219–228 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Journal of combinatorial theory. Series B. | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Bipartite Minors | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1016/j.jctb.2015.08.001 | - |
dc.date.eissued | 2015-08-21 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1312.0210v1.pdf | 130.48 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.