Skip to main content
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19032
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorKalai, Gil-
dc.contributor.authorNevo, Eran-
dc.contributor.authorNovik, Isabella-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2017-04-04T20:18:09Z-
dc.date.available2017-04-04T20:18:09Z-
dc.date.issued2016-01en_US
dc.identifier.citationM. Chudnovsky, G. Kalai, E. Nevo, I. Novik, and P. Seymour, Bipartite minors , J. Combin. Theory Ser. B, to appear, DOI 10.1016/j.jctb.2015.08.001.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19032-
dc.description.abstractWe introduce a notion of bipartite minors and prove a bipartite analog of Wagner's theorem: a bipartite graph is planar if and only if it does not contain $K_{3,3}$ as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite $(2,2)$-Laman graphs --- a certain family of graphs that contains all maximal bipartite planar graphs.en_US
dc.format.extent219–228en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of combinatorial theory. Series B.en_US
dc.rightsAuthor's manuscripten_US
dc.titleBipartite Minorsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.jctb.2015.08.001-
dc.date.eissued2015-08-21en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1312.0210v1.pdf130.48 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.