Skip to main content

Geometry, Kinematics, and Magnetization of Simulated Prestellar Cores

Author(s): Chen, Che-Yu; Ostriker, Eve C

To refer to this page use:
Abstract: We utilize the more than 100 gravitationally bound dense cores formed in our three-dimensional, turbulent MHD simulations reported in Chen & Ostriker to analyze structural, kinematic, and magnetic properties of prestellar cores. Our statistical results disagree with the classical theory of star formation in which cores evolve to be oblate with magnetic fields parallel to the minor axes. Instead, we find that cores are generally triaxial, although the corescale magnetic field is still preferentially most parallel to the core’s minor axis and most perpendicular to the major axis. The internal and external magnetic field directions are correlated, but the direction of integrated core angular momentum is misaligned with the core’s magnetic field, which is consistent with recent observations. The ratio of rotational/ total kinetic and rotational/ gravitational energies are independent of core size and consistent in magnitude with observations. The specific angular momentum also follows the observed relationship L/M proportional to R-3/2, indicating that rotation is acquired from ambient turbulence. With typical E-rot/E-K similar to 0.1, rotation is not the dominant motion when cores collapse.
Publication Date: 20-Sep-2018
Electronic Publication Date: 18-Sep-2018
Citation: Chen, Che-Yu, Ostriker, Eve C. (2018). Geometry, Kinematics, and Magnetization of Simulated Prestellar Cores. ASTROPHYSICAL JOURNAL, 865 (10.3847/1538-4357/aad905
DOI: doi:10.3847/1538-4357/aad905
ISSN: 0004-637X
EISSN: 1538-4357
Related Item:
Type of Material: Journal Article
Journal/Proceeding Title: ASTROPHYSICAL JOURNAL
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.